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Abstract— This paper investigates two frameworks for in-
terfacing trajectory tracking functions with a computationally
tractable nonlinear model predictive trajectory guidance mod-
ule for an autonomous road vehicle. In the first framework,
the predictive trajectory guidance itself is configured in a
tracking mode where the control inputs computed by the model
predictive control act as targets for some lower-level control
system acting on the steering, brakes or engine. In the second
framework, the state trajectories computed by the predictive
trajectory guidance module are configured to be tracked by a
non-predictive state tracking controller derived via input/output
linearization. In both frameworks, the main considerations are
driven by the time scales selected for computational expediency
of the predictive guidance module, its update rate, and for
control of the lower-level dynamics. The performance of the two
frameworks, including the computational aspects, are compared
considering public road driving as well as high performance
race line scenarios.

I. INTRODUCTION

Recent developments in vehicle control show promising
results towards guaranteeing safe vehicle operation under
various conditions. These are not only of high importance for
todays vehicles with the driver-in-the-loop but for future au-
tonomous vehicles. The control formulations for autonomous
vehicles often have a natural hierarchy where trajectory
guidance is performed as a higher-level control and trajectory
tracking tasks are executed as a lower-level control.

In this paper, we focus on how an MPC-based predic-
tive trajectory guidance (PTG) module may be properly
integrated with the lower-level vehicle control. The pre-
dictive trajectory guidance we use here is proposed in a
companion work of the authors [1], but other trajectory
guidance algorithms could also be considered [2], [3]. In
[1], the MPC scheme of the PTG computes the control
inputs needed for the vehicle to follow the optimal state
trajectory (position, speed, heading, yaw rate, etc). Then, a
lower-level controller generates the requested MPC control
input with the available actuation (steering, engine, brakes).
In this structure, high MPC update rates may be necessary
to handle fast vehicle dynamics. This increases the compu-
tational burden in spite of the efficiency of the optimization
algorithms that may be selected. Alternatively, the PTG can
be configured to output an optimal state trajectory and then
various methods can be used at the lower-level control to
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track the state trajectory. In fact, path and speed tracking
control is widely studied in the context of traditional vehicle
stability control, where the desired vehicle state trajectories
to be tracked are generated by passing human driver inputs
through some reference models. However, when it comes to
autonomous vehicle control, the integration of the higher-
level predictive trajectory guidance and the lower-level state
trajectory tracking has not been explored much. Existing
works that treat this issue include [3]–[7] where the lower-
level tracking controller is an additional MPC formulation
employing vehicle dynamics models. Therein, various issues
such as uncertain driver models, linearizing approaches, and
different vehicle dynamics models are proposed to improve
the robustness and to reduce the computational burden of
the control framework. However, the challenge with such
additional MPC-based tracking controllers at the lower-level
is that they require high update rates to accommodate the
fast vehicle dynamics being controlled, often using high-
fidelity models. This means extra computation resources are
necessary for real-time implementation of such solutions.

In light of the above discussion, in this paper, we introduce
and analyze two ideas for interfacing the predictive trajectory
guidance module to lower-level controllers. We formulate the
lower-level control structures as using either the computed
control inputs of the PTG or the computed state trajectory
as their reference. In the first case, the MPC in the PTG
itself is said to be configured in a trajectory tracking mode
(despite the name), while in the second case, it only executes
position and speed trajectory planning tasks in what we
call a planning mode. We discuss the specific modifications
needed in the PTG for properly interfacing with the suitable
lower-level controllers in each mode. We do not dwell on
the design of the lower-level controllers. Rather we adopt
existing approaches and analyze the influence on the overall
performance of the control framework. In both modes, the
main consideration is the time scale separation between the
large step sizes needed for computational expediency, and the
faster control update rate for the PTG so as to use the latest
information in dynamic environments, and the even faster
sample times needed for control of the lower-level dynamics.

The rest of the paper is organized as follows: In Section II,
the control frameworks with the two different modes of the
PTG are introduced and the underlying model for trajectory
planning is briefly reviewed. Then, the interfacing consid-
erations are outlined in Section III. Subsequently, Section
IV illustrates the performance of the two frameworks using
simulations of a high-fidelity vehicle model. Conclusions are
offered in Section V.
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II. OVERALL CONTROL FRAMEWORK AND PTG MODES
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Fig. 1. Multi-level control structure for autonomous driving

Figure 1 shows the overall control framework including
the two aforementioned modes of the PTG. For the overall
control framework in either mode, the required information
from the environmental recognition and vehicle dynamics
sensors are assumed to be processed via an assigner module
that will deliver all required data about road lane boundaries
and the (static and dynamic) objects to avoid. Also, the
vehicle position and its alignment to the road are assumed
to be available from measurement or estimation/observers.

The PTG is in Tracking Mode (TM) when the PTG itself is
configured as a tracking controller that computes the control
actions in terms of the desired accelerations and/or yaw rate
needed to optimize the MPC objective in the PTG, i.e, to
minimize the initial error of the vehicle states and to track
a reference path in the future while avoiding obstacles and
observing traffic rules. In this case, the corresponding lower-
level control acts on uk (input tracking, left side in Fig. 1).
This mode of the PTG was introduced by the authors in
[1] with additional considerations for accommodating semi-
autonomous vehicle control.

The PTG is in Planning Mode (PM) when the PTG
computes a future optimal state trajectory which is passed
down to a classical lower-level path and speed tracking
controller acting on re-interpretations of xk (state tracking,
right side in Fig. 1). In the PM of the PTG, it desired to
decouple the planning from the vehicle dynamics by not
re-initializing the prediction to the current state x0 of the
actual vehicle. This avoids reliance on detailed vehicle state
information (e.g. side slip) and poses the PTG as an open-
loop planner that can be called at reduced sampling rates
merely for the purpose of planning the optimal trajectory in
the dynamic traffic environment. Detailed depictions of the

vehicle trajectories in PM and TM are given in Fig. 5 along
with discussions of the lower-level controllers for each mode
in Section III.

A. Particle Motion Model for PTG
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ṡ

Fig. 2. Definitions of the curvilinear motion of the vehicle

A reduced vehicle model is needed for real-time im-
plementation of the nonlinear MPC of the PTG. For this
work, we adopt the particle motion model expressed in the
curvilinear frame with the definitions depicted in Fig. 2. The
complete model equations are [1]:

v̇t = at , (1a)

ψ̇e = ψ̇p− vt cos(ψe)

(
κ(s)

1− yeκ(s)

)
, (1b)

ẏe = vt sin(ψe), (1c)

ȧt = 1/Tat

(
at,d−at

)
, (1d)

ψ̈p = 1/Tψ̇p

(
ψ̇p,d− ψ̇p

)
, (1e)

ṡ = vt cos(ψe)

(
1

1− yeκ(s)

)
. (1f)

Here, the desired acceleration at,d and the desired yaw
rate ψ̇p,d act as the control inputs used to maneuver the
particle/vehicle along a given reference path. The curvature
of the reference path κ(s) is assumed to be known along
the reference path coordinate s. vt ,at are the longitudinal
particle speed and acceleration. ψ̇p is the yaw rate, ψe is the
aligning error to the reference path, and Tat ,Tψ̇p are the time
constants of the first order approximations of the longitudinal
and lateral controlled vehicle dynamics. ṡ is the projected
path speed according to Fig. 2. With the knowledge of the
reference path curvature κ(s) and the assumption that the
vehicle is required to follow this path, the following input
transformation can be made:

ψ̇p,d = ψ̇p,r +∆ψ̇p,d = vtκ (s)+∆ψ̇p,d . (2)
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This variable ∆ψ̇p,d , which is a yaw rate correction, and the
longitudinal acceleration are the main inputs in the above
particle motion model adopted for the vehicle.

B. Formulation of MPC for PTG

For tracking a reference path with the PTG, the objective
function for the MPC can be expressed in terms of the
tracking errors and control inputs as follows:

J =
Np

∑
k=0
||yk− rk||2Q︸ ︷︷ ︸
tracking error

+
Np−1

∑
k=0

||uk−ur||2R︸ ︷︷ ︸
control minimization

(3)

Here, k is the prediction step k ∈ (0,1,2, · · · ,Np) with the
prediction length Np = Hp/∆T , for sample time ∆T and
prediction horizon Hp. Q and R include a weighting for
each state/input. The MPC algorithm for the PTG solves a
nonlinear program at each update interval Tmpc ,which is
generally selected to be shorter than the ∆T of the MPC
model to allow use of the latest traffic information while
reducing the problem size for the optimization. The reader
is referred to [1] for the details of the constraint formulations
and weight selections for the MPC scheme.

In the configuration for the PTG for tracking mode, the
initial state x0 at each MPC update is assumed to be obtained
from sensing or estimation. In contrast to this, for the PTG
for planning mode, the initial state xPM

0 at the MPC update
needs special handling. This is because, as mentioned in
Section II, it is desired to decouple the planning from the
current vehicle dynamics. In particular, we consider the
practical case where the ∆T of the MPC model is larger
than the MPC update interval Tmpc. Then, updated initial
conditions are required at the time t0 +Tmpc as the available
MPC internal states at t0+∆T would be too far in the future.
A simple linear interpolation of the MPC internal states at
the time t0 +Tmpc could approximate the initial conditions,
but because of the nonlinear nature of the MPC model, this
is likely to lead to an approximation error. Consequently,
a copy of the prediction model (1) is used to resolve this
issue. The states of the particle motion model are calculated
by numerical integration using a fixed step 4th order Runge-
Kutta method from t0 until t0 +Tmpc. The integration of the
particle motion model starts at the current position s of the
real vehicle, and the control inputs obtained from the latest
MPC execution in the PTG are applied and held constant
until the next update:

xi
0 =

[
vi

t yi
e ψ i

e s ai
t,d ψ̇ i

p
]T

, (4a)

xPM
0 = xi

0 +
∫ t0+tmpc

t0
ẋidt with ẋi = f (xi

0,u0). (4b)

Herein, the upper right index marks the states of the particle
motion starting from the last MPC update. At the next re-
sampling of the MPC, xPM

0 is taken as the initial condition.

III. LOWER-LEVEL CONTROLLERS

In this section, for each proposed operating mode of the
PTG, a separate lower-level control setup is presented.
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Fig. 3. Lower-level control for trajectory guidance in tracking mode

A. Lower-Level Control for the PTG in Tracking Mode

In this mode, the PTG computes the accelerations and/or
yaw rate inputs needed to control the vehicle motion and
to track the reference path subject to traffic regulations and
obstacle avoidance. Figure 3 depicts the typical elements of a
suitable lower-level controller that acts on these accelerations
and/or yaw rate generated by the PTG. The left side shows
the longitudinal control via feed-forward (FF) and PID-
feedback control, while the right side contributes to the
lateral vehicle motion control with a speed dependent PID
feedback controller. The tuning can be done by following
traditional steps. The output of the longitudinal control is
the wheel torque, which is subjected to physical limits and
assigned for the engine or brakes depending on the sign
(traction or braking torque). The FF module uses the vehicle
mass m to generate the required torque with τFF = mat,drw.
Herein, the other resistances are neglected to keep the
number of required parameters low. The balance may be
compensated for by the feedback part.

The torque limitation module first calculates the limits for
the longitudinal tire force Fx according to the friction circle:

Fx =
√

(µHFz)
2−F2

y (5)

τ
lim
d = sign(τd) ·min(τd ,Fxrw) (6)

with the friction coefficient µH , the wheel load Fz, the
lateral wheel force Fy, and the wheel radius rw. For a rear
wheel driven vehicle considered as an example, the torque
is mapped first to the corresponding axle and then saturated
according to this. In case of braking, a fixed split is assumed
between the front and rear axles. The output of the lateral
acceleration control is a reference steering angle δ f ,d of
the front axle steering actuator. While no significant speed
dependency was found for the longitudinal control, this is
not the case for the lateral acceleration. The steering angle
is limited when a given side slip angle of the front tires is
reached. Also, a rear steering actuator is included for added

479



stability function. The following transfer function F(s) is
adopted from [8]:

δr

δ f
= F(s) = Ph

1+TDs
1+T1s

, (7)

Herein, Ph, TD, and T1 are speed dependent gains based on
the vehicle’s bicycle model parameters. In this work, the rear
steering angle is limited to in-phase (to front) steering only.

B. Lower-Level Control for PTG in Planning Mode
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Fig. 4. Lower-level control structure for the PTG in planing mode

The key desirable feature of adopting the planning mode
is to take advantage of the information about the collision-
free reference vehicle state trajectory computed by the PTG
in a dynamic traffic environment. The actual control of the
vehicle dynamics to track this planned state trajectory is
relegated to the lower-level control depicted in Fig. 4. Herein,
a trajectory preparation module interprets the MPC computed
state trajectory along with the vehicle position information
and outputs the reference state trajectories for the speed and
path tracking (SPT) controller block.
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The Trajectory Preparation module captures and manipu-
lates the MPC computed states for the complete prediction
horizon. In the first preparation step, the arc length of the
front decoupling point of the particle is calculated by:

si
λ
= si +λ + vi

tt +∆λ . (8)

If the initial MPC path coordinate s(0) is reset to zero at each
update, si in this equation will be removed. As mentioned
previously, the MPC update rate of the PTG is in general not
as high as that for the lower-level tracking control module.

To reconstruct the states in the intermediate fast sampling
instances of the lower-level controller, an interpolation part
(vi

tt) is added with t reset to zero after each MPC update.
A constant linear speed is considered for the particle model
between discrete predicted update instants assuming constant
control input of the MPC. Otherwise, the reference position
of the particle will be constant until the next MPC update
arrives, which leads to a saw tooth effect as the physical
vehicle moves forward. Also, the tracking error ∆λ of the
last step is stored and added in (8) to prevent steps in the
longitudinal control error. The corresponding values for the
particle speed, arc length, accelerations, absolute positions
and heading direction and rate are needed. Therefore, it
is necessary to calculate the absolute path in the global
frame Og using the predicted discrete states as depicted in
Fig. 5 (top). The discrete arc length of the ideal vehicle,
the corresponding curvature, and the initial heading of the
reference path (marked with Hp) are calculated with:

vi
t,Hp = x̃k(1) for k = 0..Np, (9a)

si
Hp = x̃k(4) for k = 0..Np, (9b)

∆si
Hp = vi

t,Hp∆T, (9c)

κ
i
Hp = κ(si

Hp), (9d)

θ
i(0) = ψv− (ψe +β ). (9e)

It is obvious that the dimensions of these vectors are related
to the number of prediction points Np of the MPC algorithm.
Here, the initial heading of the reference trajectory θ i

1 is
calculated with the vehicle heading, heading error and side
slip angle β , respectively. Consequently, the heading angle
of the following prediction points are calculated using the
reference trajectory of the road lane at the predicted arc
length of the particle and the arc length itself. Also, the
reference for the real vehicle tracking controller is the MPC
predicted path and speed. Thus, the absolute heading of the
trajectory is given for k = 1...Np:

θ
i
Hp(k) =θ

i(k−1)+ si
Hp(k)κ

i
Hp(k)+ψ

i
e(k). (10)

Furthermore, the absolute positions result from the actual
vehicle position (Xg,Yg) and

X i
g(0) = Xg +

(
ye(0)− yi

e(0)
)

sin(θ i(0)), (11a)

Y i
g(0) = Yg +

(
yi

e(0)− ye(0)
)

cos(θ i(0)), (11b)

with the initial particle position (X i
g(0),Y

i
g(0)), the predicted

particle path deviation yi
e, and the initial real vehicle path

deviation ye(0). Finally, the absolute reference path position
reads (for k = 1..Np):

dx =∆si
Hp cos(θ̇ i

Hp), dy = ∆si
Hp sin(θ̇ i

Hp) (12a)[
X i

g(k)
Y i

g(k)

]
=

[
X i

g(k−1)
Y i

g(k−1)

]
(12b)

+

[
cos(θ i

Hp
(k−1)) −sin(θ i

Hp
(k−1))

sin(θ i
Hp
(k−1)) cos(θ i

Hp
(k−1))

][
dx
dy

]
Herein, θ̇ i

Hp
can be seen as the change in heading direction

per prediction point and (12) describes the rotation of the
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incremental changes from the local frame along the reference
path. Finally, the corresponding values at si

λ
result from an

interpolation between the previous arc length point si
pre and

the next higher value of the MPC discretization (labeled
post) via linear interpolation. For instance, the speed of the
particle at the front decoupling point is:

vi
t,λ = vi

t,si
pre

+(vi
t,si

post
− vi

t,si
pre
)
(si

λ
− si

pre)

(si
post − si

pre)
. (13)

The same interpolation can be used to find the required
reference point values X i

g,λ ,Y
i
g,λ , v̇i

t,λ , θ i
λ
, θ̇ i

λ
and θ̈ i

λ
.

The second module in Fig. 4 is the SPT controller block.
The particular SPT controller we adopt here uses the coor-
dinates of the so-called front decoupling point λ = J/(lrm)
(see Fig. 6). The controller therein is adopted from [9], and
is derived via an input/output linearization of the bicycle
vehicle model dynamics with a front decoupling point. The
advantage of the front decoupling point (also known as center
of percussion [10]) over the rear decoupling point is the
independence of the steering control law from the rear tire
force. However, in the resulting control law, a nonlinear tire
force model is used.

The SPT controller block behaves like conventional cas-
caded position and speed control-loops and aligns the front
decoupling point to the desired point on the reference path.It
has an outer loop that calculates the required velocities,
while the inner loop uses these velocities for the tire force
calculation. The SPT block uses the detailed information
computed by Trajectory Preparation module, see Fig. 4.
Note that this model-based tracking controller of the SPT
requires more information about the vehicle and tires than
the simple acceleration controllers of the tracking mode.
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Fig. 6. Trajectory tracking with bicylce model and reference trajectory

IV. RESULTS AND DISCUSSIONS

In this section, the two frameworks involving the PTG
modes and the corresponding lower-level controllers are
evaluated via simulations. A high-fidelity vehicle model
with nonlinear tires, and tire force relaxation, load transfer,
driving resistances and actuator dynamics are used for the
simulations. The lower-level controllers are sampled with
Tll = 1 ms commensurate with the fast lower-level vehicle
dynamics. For a baseline, we also consider simulations of
the particle motion model (labeled ideal) given by (1), which
uses the direct output uk of the MPC as its control input.

First, we consider a race line scenario where the PTG
needs to plan a reference path through a combination of
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corners of a race track. The objective is to find a path that
maximizes the driven length in the prediction time Hp. The
MPC trajectory guidance pushes the vehicle speed to its
maximum under consideration of the vehicle handling and
road limitations. The results for the particle motion model
and also for the high-fidelity vehicle model with the PTG in
tracking mode and in planning mode are depicted in Figs.
7, 8, and 9. The internal discretization of the MPC model
is sampled with ∆T = 0.15 s for both modes, while the
MPC is sampled with Tmpc = 0.03 s. This gives in TM a
stable control result for all analyzed maneuvers. As can be
seen from the gg-diagram, in the TM mode, the lower-level
controller makes the high-fidelity vehicle follow the ideal
vehicle with minor error. However, the PTG in PM, shows
higher deviations from the ideal vehicle’s acceleration profile
but the position is close to the ideal reference path. While
the PTG in TM is able to limit the vehicle lateral position
to the given hard constraints (see Fig. 8), the PTG in PM
decouples the real vehicle control from the constrained MPC
control input and thus its lower-level control violates the
limit at s = 200 m. The same behavior is observed for the
combined acceleration limit which is set to 0.85 g. While the
PTG in TM follows the lateral reference very closely (see
Fig. 9, upper right plot), the combination of the lateral and
longitudinal control with the PTG in PM leads to a limit
violation (Fig. 7).

To illustrate the effect of the choice of the update rates in
PM, we consider the same race line maneuver with different
MPC update rates in the range of Tmpc = 0.03−0.125 s. The
results depicted in Fig. 9 (bottom left) show that a higher
update rate leads to a slightly better performance provided
fast computational hardware are available. An update rate of
0.075 - 0.1 s may be a good compromise in PM.

Next, we consider a cornering maneuver from public driv-
ing with reduced lateral dynamics compared to the previous
maneuver. In such maneuvers, the control performance of
the PTG in PM with its lower-level SPT control may be
acceptable. Figure 10 shows the control errors for a simple
cornering maneuver with an ≤ 4.5 m/s2. The lateral error
of the center of gravity is used for evaluating the control
performance as it is also a state in the PTG module and
available in TM. Here, the lateral error of the center of
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gravity is less than 13 cm for both modes, which seems to be
sufficient for this public traffic driving scenario. For the PM,
this satisfactory performance also implies slower update rates
could be used, while the TM requires the higher sampling of
0.03 s to generate a stable result. For steady state cornering,
no clear difference is found in the results of the different
sample times. The difference is only seen at the beginning
and end of the cornering maneuver where the transients of
the lateral vehicle dynamics plays a role.

V. CONCLUSIONS

In this paper, two different ideas for interfacing a Pre-
dictive Trajectory Guidance module (PTG) with lower-level
vehicle controllers are discussed. The PTG incorporates
the particle motion dynamics model, and considers several
references and hard constraints imposed by a traffic man-
agement module and vehicle dynamics constraints such as
tire-road capability. Depending on the lower-level control
structure adopted, the PTG can be configured in tracking
(TM) or planning mode (PM). The version of the lower-
level control for the TM uses the PTG control output to
calculate the actuator inputs, while the version in the PM
uses the optimal, predicted path and speed of the PTG and
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Fig. 10. Cornering in PM/TM: accelerations, control errors of SPT
projected in vehicle coordinate system and lateral position error, different
update rates for PTG in PM

implements an input/output linearizing tracking controller
with a front decoupling point. The control performance of
the two configurations have been illustrated for the control
of an autonomous vehicle at the limits of handling as well as
for simple cornering maneuvers seen on public roads. Using
high-fidelity vehicle model simulations, it was observed that
while the PTG in TM always operates within the constraints
specified, the PTG in PM does not guarantee satisfying path
or acceleration limits during aggressive maneuvers. In simple
maneuvers, both frameworks could give satisfactory perfor-
mance with acceptable computational overhead. By contrast,
the PTG in PM may avoid the need for oversampling in the
MPC computation as the vehicle dynamics is relegated to be
stabilized by the lower-level control.
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